Directed trans-differentiation of thymus cells into parathyroid-like cells without genetic manipulation.
نویسندگان
چکیده
Replacement of a diseased organ with an autologously derived tissue is an ideal therapy for some medical problems. However, it is difficult to recreate many adult human tissues in vitro due to the functionally necessary architecture of most organs and the lack of understanding of methods to direct the development of the organ of interest. The parathyroid gland is ideal for in vitro organ development because this gland is relatively simple, is transplantable, and is commonly affected by a surgical complication rather than an autoimmune disease. We have investigated thymus as a source of autologous endoderm and parathyroid-like precursor cells. Human thymus cells were treated with a differentiation protocol we developed with human embryonic stem cells (The Bingham Protocol) that utilizes timed exposures to Activin A and soluble Sonic hedgehog (Shh). We incrementally changed the protocol to optimize the differentiation of the thymus cells into parathyroid-like cells. The final protocol used 50 ng/mL Activin A and 100 ng/mL Shh over 13 weeks. The differentiated cells expressed the parathyroid markers parathyroid hormone (PTH), calcium sensing receptor, chemokine receptor type-4 (CXCR4), and chorian-specific transcription factor (GCM2) as measured by reverse transcription-polymerase chain reaction and PTH enzyme-linked immunosorbent assay. Cultured thymus cells without Activin A or Shh exposure did not secrete PTH nor express similar markers. The differentiated cells released PTH, which was suppressed in response to increased calcium concentration. The chemically differentiated cells did not form tumors in immune-compromised mice. Our protocol recreated cells with markers of parathyroid tissue that responded as parathyroid cells to physiologic stimuli. This approach is a further step toward a strategy to restore parathyroid function using autologous cells that were directed to differentiate by nongenetic in vitro manipulation.
منابع مشابه
Trans-differentiation of the Adipose Tissue-Derived Stem Cells into Neuron-Like Cells Expressing Neurotrophins by Selegiline
Background: Adult stem cells (ASC) are undifferentiated cells found throughout the body. These cells are promising tools for cell replacement therapy in neurodegenerative disease. Adipose tissue is the most abundant and accessible source of ASC. This study was conducted to evaluate effect of selegiline on differentiation of adipose-derived stem cells (ADSC) into functional neuron-like cells (NL...
متن کاملEffect of Mouse Liver Extract on in Vitro Differentiation of Amniotic Membrane Stem Cells into Hepatocyte-Like Cells
ABSTRACT Background and Objective: Multipotent placental amniotic membrane mesenchymal stem cells (MSCs) are capable of differentiating into specialized tissues under different conditions. The aim of this study was to induce differentiation of placental amniotic membrane MSCs from NMRI mouse into hepatocytes using liver extract. &nb...
متن کاملTHE EFFECT OF HYPERTHERMIA ON THE DIFFERENTIATION OF LEUKEMIC CELL LINES
Treatment of human promonocytic leukemic cell line U937 with mild hyperthermia in the temperature range of 40-43°C resulted in differentiation of these cells into monocyte/macrophage-like cells in a heat dose and time dependent manner. This process was accompanied by marked morphological, functional and proliferational changes. U937 cells which normally grow in supension in the logarithmic...
متن کاملEstrogen treatment enhances neurogenic differentiation of human adipose derived stem cells in vitro
Objective(s):Estrogen is a sexual hormone that has prominent effects on reproductive and non-reproductive tissues. The aim of this study is to evaluate the effects of estrogen on the proliferation and neural differentiation of human adipose derived stem cells (ADSCs) during neurogenic differentiation. Materials and Methods: Isolated human ADSCs were trans-differentiated in neural induction med...
متن کاملDifferentiation of Umbilical Cord Lining Membrane-Derived Mesenchymal Stem Cells into Endothelial-Like Cells
Background: Stem cell therapy for the treatment of vascular-related diseases through functional revascularization is one of the most important research areas in tissue engineering. The aim of this study was to investigate the in vitro differentiation of umbilical CL-MSC into endothelial lineage cells. Methods: In this study, isolated cells were characterized for expression of MSC-specific marke...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Tissue engineering. Part C, Methods
دوره 17 11 شماره
صفحات -
تاریخ انتشار 2011